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The road to learning by precept is
long, by example short and effective.

Lucius Annaeus Seneca
A philosopher of Ancient Rome

Preface
Infroduction

The Kalman Filter algorithm is a powerful tool for estimating and predicting system
states in the presence of uncertainty and is widely used as a fundamental component in
applications such as target tracking, navigation, and control.

Although the Kalman Filter is a straightforward concept, many resources on the subject
require extensive mathematical background and fail to provide practical examples and

illustrations, making it more complicated than necessary.

Back in 2017, I created an online tutorial based on numerical examples and intuitive
explanations to make the topic more accessible and understandable. The online tutorial
provides introductory material covering the univariate (one-dimensional) and multivariate

(multidimensional) Kalman Filters.

Over time, I have received many requests to include more advanced topics, such as
non-linear Kalman Filters (Extended Kalman Filter and Unscented Kalman Filter),

sensors fusion, and practical implementation guidelines.

Based on the material covered in the online tutorial, I authored the “ Kalman Filter
from the Ground Up” e-book.

The original online tutorial will remain available for free access on the KALMANFILTER.NET
website. The e-book “Kalman Filter from the Ground Up” and the source code for the

numerical examples can be purchased online.

The book takes the reader from the basics to the advanced topics, covering both theoretical
concepts and practical applications. The writing style is intuitive, prioritizing clarity
of ideas over mathematical rigor, and it approaches the topic from a philosophical

perspective before delving into quantification.

The book contains many illustrative examples, including 14 fully solved numerical
examples with performance plots and tables. Examples progress in a paced, logical

manner and build upon each other.

The book also includes the necessary mathematical background, providing a solid foun-
dation to expand your knowledge and help to overcome your math fears.

This book is the solution for those facing challenges with the Kalman Filter and the


https://www.kalmanfilter.net/book.html
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underlying math.

Upon finishing this book, you will be able to design, simulate, and evaluate the perfor-
mance of the Kalman Filter.

The book includes four parts:

e Part 1 serves as an introduction to the Kalman Filter, using eight numerical
examples, and doesn’t require any prior mathematical knowledge. You can call it
“The Kalman Filter for Dummies,” as it aims to provide an intuitive understanding
and develop “Kalman Filter intuition.” Upon completing Part 1, readers will thor-
oughly understand the Kalman Filter’s concept and be able to design a univariate
(one-dimensional) Kalman Filter.

This part is available for free access!

e Part 2 presents the Kalman Filter in matrix notation, covering the multivariate
(multidimensional) Kalman Filter. It includes a mathematical derivation of Kalman
Filter equations, dynamic systems modeling, and two numerical examples. This
section is more advanced and requires basic knowledge of Linear Algebra (only
matrix operations). Upon completion, readers will understand the math behind
the Kalman Filter and be able to design a multivariate Kalman Filter.

Most of this part is available for free access!

e Part 3 is dedicated to the non-linear Kalman Filter, which is essential for mastering
the Kalman Filter since most real-life systems are non-linear. This part begins with
a problem statement and describes the differences between linear and non-linear
systems. It includes derivation and examples of the most common non-linear filters:
the Extended Kalman Filter and the Unscented Kalman Filter.

e Part 4 contains practical guidelines for Kalman Filter implementation, including
sensor fusion, variable measurement uncertainty, treatment of missing measure-

ments, treatment of outliers, and the Kalman Filter design process.
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About the Kalman Filter

Many modern systems utilize multiple sensors to estimate hidden (unknown) states
through a series of measurements. For instance, a GPS receiver can estimate location and
velocity, where location and velocity represent the hidden states, while the differential

time of the arrival of signals from satellites serves as measurements.

One of the biggest challenges of tracking and control systems is providing an accurate
and precise estimation of the hidden states in the presence of uncertainty. For example,
GPS receivers are subject to measurement uncertainties influenced by external factors,
such as thermal noise, atmospheric effects, slight changes in satellite positions, receiver

clock precision, and more.

The Kalman Filter is a widely used estimation algorithm that
plays a critical role in many fields. It is designed to estimate the
hidden states of the system, even when the measurements are
imprecise and uncertain. Also, the Kalman Filter predicts the
future system state based on past estimations.

The filter is named after Rudolf E. Kalméan (May 19, 1930 — July
2, 2016). In 1960, Kalméan published his famous paper describing

a recursive solution to the discrete-data linear filtering problem [1].
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1. The Necessity of Prediction

Before delving into the Kalman Filter explanation, let us first understand the necessity

of a tracking and prediction algorithm.

To illustrate this point, let’s take the example of a tracking radar.

=

Figure 1.1: Tracking radar.

Suppose we have a track cycle of 5 seconds. At intervals of 5 seconds, the radar samples
the target by directing a dedicated pencil beam.

Once the radar “visits” the target, it proceeds to estimate the current position and
velocity of the target. The radar also estimates (or predicts) the target’s position at the
time of the next track beam.

The future target position can be easily calculated using Newton’s motion equations:

1
x = xo + VoAt + iaAtQ (1.1)

Where:

x is the target position

xo is the initial target position

vo is the initial target velocity

a is the target acceleration

At is the time interval (5 seconds in our example)

p ) If you need a refresh on the motion equations, refer to Appendix I.

When dealing with three dimensions, Newton’s motion equations can be expressed as a
system of equations:
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;

1
T = x9 + vg0At + 5 a, At?

1
Y = Yo + vy At + 3 ay At? (1.2)

1
| 2 =20 + v20AL + 3 a,At?

The set of target parameters [x,y, 2, Uz, Uy, Uz, Gz, Gy, ;] is known as the System State.
The current state serves as the input for the prediction algorithm, while the algorithm’s
output is the future state, which includes the target parameters for the subsequent time

interval.

The system of equations mentioned above is known as a Dynamic Model or State
Space Model. The dynamic model describes the relationship between the input and
output of the system.

Apparently, if the target’s current state and dynamic model are known, predicting the
target’s subsequent state can be easily accomplished.

In reality, the radar measurement is not entirely accurate. It contains random errors or
uncertainties that can affect the accuracy of the predicted target state. The magnitude
of the errors depends on various factors, such as radar calibration, beam width, and
signal-to-noise ratio of the returned echo. The random errors or uncertainties in the

radar measurement are known as Measurement Noise.

In addition, the target motion is not always aligned with the motion equations due
to external factors like wind, air turbulence, and pilot maneuvers. This misalignment
between the motion equations and the actual target motion results in an error or
uncertainty in the dynamic model, which is called Process Noise.

Due to the Measurement Noise and the Process Noise, the estimated target position can
be far away from the actual target position. In this case, the radar might send the track
beam in the wrong direction and miss the target.

In order to improve the radar’s tracking accuracy, it is essential to employ a prediction
algorithm that accounts for both process and measurement uncertainty.

The most common tracking and prediction algorithm is the Kalman Filter.
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Before we start, I would like to explain several fundamental terms such as variance,
standard deviation, normal distribution, estimate, accuracy, precision, mean, hidden

state, and random variable.

I expect that many readers of this book are familiar with introductory statistics. However,
at the beginning of this book, I promised to supply the necessary background that is
required to understand how the Kalman Filter works. If you are familiar with this topic,
feel free to skip this chapter and jump to chapter 3.

2.1 Hidden State

The term Hidden State refers to the actual state of a system that is not directly
observable or measurable. Instead, the hidden state must be inferred from observable
data, often using a mathematical model and estimation techniques. For instance, consider
a scenario with five coins: two 5-cent coins and three 10-cent coins. The system state is
the average value of the coins. By averaging the coin values, we can directly calculate

this mean value.

Figure 2.1: Coins.

1 1
M:7Zvn:5(5+5+1o+10+10):8cent (2.1)

In this example, the outcome cannot be considered a hidden state because the system
states (the coin values) are known, and the calculation involves the entire population (all
5 coins).

Now assume five different weight measurements of the same person: 79.8kg, 80kg, 80.1kg,
79.8kg, and 80.2kg. The person is a system, and the person’s weight is a system state.

The measurements are different due to the random measurement error of the scales. We
do not know the true value of the weight since it is a Hidden State. However, we can
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estimate the weight by averaging the scales’ measurements.

N

1
=— W= (79. 1479 2) = T79. 2.2
w NZW = (79.8+ 80 +80.1+79.8 + 80.2) = 79.98kg (2.2)

n=1

The outcome is the estimated system state.

Figure 2.2: Man on scales.

p ) While the standard unit of weight is Newton (N), a measure of the force exerted on
an object due to gravity, people commonly refer to their 'weight’ in kilograms (kg),
a unit of mass. To enhance simplicity and accessibility in this book, I’ve opted to
use kilogram units for weight instead of Newton.

2.2 Variance and Standard deviation

The Variance is a measure of the spreading of the data set from its mean.
The Standard Deviation is the square root of the variance.

The standard deviation is denoted by the Greek letter o (sigma). Accordingly, the

variance is denoted by 2.

Suppose we want to compare the heights of two high school basketball teams. The
following table provides the players’ heights and the mean height of each team.

Player 1 Player 2 Player 3 Player 4 Player 5 Mean

Team A 1.89m 2.10m 1.75m 1.98m 1.85m 1.914m

Team B 1.94m 1.90m 1.97Tm 1.89m 1.8"Tm 1.914m

Table 2.1: Players’ heights.

As we can see, the mean height of both teams is the same. Let us examine the height
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variance.

We also want to know the data set deviation from its mean. We can calculate the distance
from the mean for each variable by subtracting the mean from each variable.

The height is denoted by z, and the heights” mean by the Greek letter u. The distance
from the mean for each variable would be:

Tp — b= Ty — 1.914m (2.3)

The following table presents the distance from the mean for each variable.

Player 1 Player 2 Player 3 Player 4 Player 5

Team A -0.024m 0.186m -0.164m 0.066m -0.064m

Team B 0.026m -0.014m 0.056m -0.024m -0.044m

Table 2.2: Distance from the mean.

Some of the values are negative. To get rid of the negative values, let us square the

distance from the mean:

(2n — p)? = (z, — 1.914m)* (2.4)

The following table presents the squared distance from the mean for each variable.

Player 1 Player 2 Player 3 Player 4 Player 5

Team A 0.000576m?  0.034596m?  0.026896m?  0.004356m?  0.004096m?2

Team B 0.000676m?  0.000196m?  0.003136m?  0.000576m?  0.001936m>

Table 2.3: Squared distance from the mean.

To calculate the variance of the data set, we need to find the average value of all squared
distances from the mean:

N
o= oD (o ) (2
n=1
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For team A, the variance would be:

1 N
03 = N§ (4, —M)2
n=1

(0.000576 + 0.034596 + 0.026896 + 0.004356 + 0.004096) = 0.014m>

(S

For team B, the variance would be:

1 N
)
n=1

(0.000676 + 0.000196 + 0.003136 4 0.000576 + 0.001936) = 0.0013m>

ot =

We can see that although the mean of both teams is the same, the measure of the
height spreading of Team A is higher than the measure of the height spreading of Team
B. Therefore, the Team A players are more diverse than the Team B players. There
are players for different positions like ball handler, center, and guards, while the Team
B players are not versatile. The units of the variance are meters squared; it is more

convenient to look at the standard deviation, which is a square root of the variance.

N
7=\ 2 o~ nP (2.6
n=1

e The standard deviation of Team A players’ heights would be 0.12m.
e The standard deviation of Team B players’ heights would be 0.036m.

Now, assume that we would like to calculate the mean and variance of all basketball
players in all high schools. That would be an arduous task - we would need to collect
data on every player from every high school.

On the other hand, we can estimate the players’ mean and variance by picking a big
data set and making the calculations on this data set.

The data set of 100 randomly selected players should be sufficient for an accurate

estimation.

However, when we estimate the variance, the equation for the variance calculation is

slightly different. Instead of normalizing by the factor NV, we shall normalize by the
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factor N — 1:
1 N
O-gampled = HZ (l‘n - /'6)2 (27)
n=1

The factor of N — 1 is called Bessel’s correction.

You can see the mathematical proof of the above equation on visiondummy or Wikipedia.

2.3 Normal Distribution

It turns out that many natural phenomena follow the Normal Distribution. The
normal distribution, also known as the Gaussian (named after the mathematician Carl

Friedrich Gauss), is described by the following equation:

2o 202

f (w5 p,0%) = ! 263629( ( m) (2.8)

The Gaussian curve is also called the PDF (Probability Density Function) for the

normal distribution.

The following chart describes PDFs of the pizza delivery time in three cities: city "A,’
city 'B,” and city 'C.’

Distribution of pizza delivery times

=== City A, p: 30min, o: 5min
s City B, u: 40min, o: 5min
m City C, gz 30min, o: 10min

0.06 -

0.05 -

Density

0.00 -

40 50 60

B
Minutes

Figure 2.3: Normal distribution PDFs.


http://www.visiondummy.com/2014/03/divide-variance-n-1/
https://en.wikipedia.org/wiki/Bessel%27s_correction
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e In city A’ the mean delivery time is 30 minutes, and the standard deviation is 5
minutes.

e In city 'B,” the mean delivery time is 40 minutes, and the standard deviation is 5
minutes.

e In city 'C,” the mean delivery time is 30 minutes, and the standard deviation is 10

minutes.

We can see that the Gaussian shapes of the city "A’ and city 'B’ pizza delivery times are
identical; however, their centers are different. That means that in city A,” you wait for
pizza for 10 minutes less on average, while the measure of spread in pizza delivery time

is the same.

We can also see that the centers of Gaussians in the city ’A’ and city 'C’ are the same;
however, their shapes are different. Therefore the average pizza delivery time in both

cities is the same, but the measure of spread is different.

The following chart describes the proportions of the normal distribution.
Distribution of pizza delivery times

006 -

005 -

Density

003 -

0oz -

0ol -

Minutes

68.26%

95.44%

99.74%

Figure 2.4: Proportions of the normal distribution.

e 68.26% of the pizza delivery times in City A lie within p + o range (25-35 minutes)
e 95.44% of the pizza delivery times in City A lie within p 4 20 range (20-40 minutes)
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e 99.74% of the pizza delivery times in City A lie within p =+ 30 range (15-45 minutes)

Usually, measurement errors are distributed normally. The Kalman Filter design assumes

a normal distribution of the measurement errors.

2.4 Random Variables

A random variable describes the hidden state of the system. A random variable is a

set of possible values from a random experiment.

The random variable can be continuous or discrete:
e A continuous random variable can take any value within a specific range, such as
battery charge time or marathon race time.
e A discrete random variable is countable, such as the number of website visitors or
the number of students in the class.

The random variable is described by the probability density function. In this book, the
probability density function is characterized by:
e 1ix — the mean of the sequence of measurements.

e 02 — the variance of the sequence of measurements.

2.5 Estimate, Accuracy and Precision

An Estimate is about evaluating the hidden state of the system. For example, the
true position of the aircraft is hidden from the observer. We can estimate the aircraft
position using sensors, such as radar. The estimate can be significantly improved by
using multiple sensors and applying advanced estimation and tracking algorithms (such

as the Kalman Filter). Every measured or computed parameter is an estimate.
Accuracy indicates how close the measurement is to the true value.

Precision describes the variability in a series of measurements of the same parameter.

Accuracy and precision form the basis of the estimate.

The following figure illustrates accuracy and precision.
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y y Estimates . o'y
o b @ ik ... Estimates
@ ¢ Estimates P G ....
True Value True Value True Value
° DU A 2 X
Low accuracy Low accuracy High accuracy
Low precision High precision High precision

Figure 2.5: Accuracy and Precision.

High-precision systems have low variance in their measurements (i.e., low uncertainty),
while low-precision systems have high variance in their measurements (i.e., high uncer-

tainty). The random measurement error produces the variance.

Low-accuracy systems are called biased systems since their measurements have a built-in

systematic error (bias).

The influence of the variance can be significantly reduced by averaging or smoothing
measurements. For example, if we measure temperature using a thermometer with a
random measurement error, we can make multiple measurements and average them. Since
the error is random, some measurements would be above the true value and others below
the true value. The estimate would be close to the true value. The more measurements

we make, the closer the estimate will be.

On the other hand, a biased thermometer produces a constant systematic error in the

estimate.

All examples in this book assume unbiased systems.
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2.6 Summary

The following figure represents a statistical view of measurement.

Expected Value E (x)

(Measurements mean [ )

PDF of

Measurements accuracy (bias) measurements

1
1
1
1
1
I
1
1
1
1
1
I
[
1
[
[
1

b s mie e wa Vs e )

I
[
1
I
1
1
]

. e o v ccscammese o e :
True value —0, Measurements 10y
1

¢ al

Measurements precisio'n
(uncertainty)

Figure 2.6: Statistical view of measurement.

A measurement is a random variable described by the PDF.

The offset between the mean of the measurements and the true value is the accuracy of
the measurements, also known as bias or systematic measurement error.

The dispersion of the distribution is the measurement precision, also known as the

measurement noise, random measurement error, or measurement uncertainty.



3. The a — g — ~ filter

This chapter is introductory, and it describes the a— 3 and o — 5 — + filters. These filters
are frequently used for time series data smoothing. The principles of the v — B(—~) filter
are closely related to the Kalman Filter principles.

3.1 Example 1 - Weighting the gold

Now we are ready for the first simple example. In this example, we estimate the state
of the static system. A static system is a system that doesn’t change its state over a
reasonable period. For instance, the static system could be a tower, and the state would
be its height.

In this example, we estimate the weight of the gold bar. We have unbiased scales, i.e., the
measurements don’t have a systematic error, but the measurements do include random

noise.

Figure 3.1: Man Weighing Gold (Adriaen Isenbrant, Netherlandish ca. 1515-20).

The system is the gold bar, and the system state is the weight of the gold bar. The
dynamic model of the system is constant since we assume that the weight doesn’t change
over short periods.

To estimate the system state (i.e., the weight value), we can make multiple measurements

and average them.
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Weight |

Measurements

True Value

Measureme'ﬁts
Figure 3.2: Measurements vs. True value.
At the time n, the estimate 2, , would be the average of all previous measurements:
Tpp = 1 (z1+ 22+ ...+ 2n-1+2,) = EZ (z:) (3.1)
" " =1

Example Notation:

x is the true value of the weight.
Zn is the measured value of the weight at time n.
Enn is the estimate of x at time n (the estimate is made after taking the

measurement zp).
Tntin is the estimate of the future state (n + 1) of x. The estimate is made at the
time n. In other words, #,41,, is a predicted state or extrapolated state.
Zp—1n—1 is the estimate of x at time n — 1 (the estimate is made after taking the
measurement z,_1).

Tnn—1 is a prior prediction, made at time n — 1, estimating the state at time n.

p ) In the literature, a caret (or hat) over a variable indicates an estimated value.

The dynamic model in this example is static (or constant) since the weight of gold doesn’t

change over time, therefore &,,11, = &y .

Although the Equation 3.1 is mathematically correct, it is not practical for implementation.
In order to estimate &, , we need to remember all historical measurements; therefore,
we need a large memory. We also need to recalculate the average repeatedly if we want
to update the estimated value after every new measurement. Thus, we need a more

powerful Central Processing Unit (CPU).

It would be more practical to keep the last estimate only (£,—1,—1) and update it after
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every new measurement. The following figure exemplifies the required algorithm:

e Estimate the current state based on the measurement and prior prediction.
e Predict the next state based on the current state estimate using the Dynamic

Model.
n-1 n n+1 .
time
O O O &
— p———-
Xnn-1 x\n,n n+1n
=&

Figure 3.3: Ezample Notation.

We can modify the averaging equation for our needs using a small mathematical trick:

Table 3.1: Averaging equation.

Equation Notes
. 1Zn: (21) Average formula: sum of n
Tpm = — 2
e — ’ measurements divided by n
1 nz_:l () + Sum of the n — 1 measurements +
= — z z
— ’ " the last measurement divided by n
1=l 1
=Y (z1)+—2p Expand
ni— n
In—1222 1 . o
= 12 (z) + — Multiply and divide by term n — 1

Continued on next page
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Table 3.1: continued from previous page

Equation Notes
n—1 1 1 1 Reorder. The ’orange’ term is the
== Z ( ’-/) + — Zn . .
n n—1 — n prior estimate
n—1 1 .
= Tnin-1+—2n Rewriting the sum
n n
1 1 n—1

Distribute the term

=Tp—1pn—1— —Tp—1n-11+ — 2n
n n n

1

=Tp-1n-1+ ﬁ(zn — Tp—1n—1) Reorder

Zn—1n—1 is the estimated state of = at the time n — 1, based on the measurement at the

time n — 1.

Let’s find &, ,—1 (the predicted state of = at the time n), based on &,_1,-1 (the
estimation at the time n — 1). In other words, we would like to extrapolate Z,,—1 1 to

the time n.

Since the dynamic model in this example is static, the predicted state of x equals the

estimated state of x: &y, n—1 = Tn—1,n-1

Based on the above, we can write the State Update Equation:

State Update Equation

j:n,n = jn,n—l + E (Zn - jn,n—l) (32)

The State Update Equation is one of the five Kalman filter equations. It means the

following;:

The estimate
of the current
state

Predicted
value of the
current state

Factor

Measurement

Predicted
value of the
current state

Figure 3.4: State Update Equation.
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The factor 1 /n is specific to our example. We will discuss the vital role of this factor
later, but right now, I would like to note that in “Kalman Filter language,” this factor
is called the Kalman Gain. It is denoted by K,. The subscript n indicates that the
Kalman Gain can change with every iteration.

The discovery of K,, was one of Rudolf Kalman’s significant contributions.

Before we get into the guts of the Kalman Filter, we use the Greek letter o, instead of
K,.

So, the State Update Equation looks as follows:
in,n = jn,n—l + an (Zn - jn,n—l) (33)
The term (2, — Zpp—1) is the “measurement residual,” also called innovation. The

innovation contains new information.

In this example, 1 /n decreases as n increases. In the beginning, we don’t have enough
information about the current state; thus, the first estimation is based on the first
measurement %\nzl = 1. As we continue, each successive measurement has less weight
in the estimation process, since ! /n decreases. At some point, the contribution of the

new measurements will become negligible.

Let’s continue with the example. Before we make the first measurement, we can guess
(or rough estimate) the gold bar weight simply by reading the stamp on the gold bar. It

is called the Initial Guess, and it is our first estimate.

The Kalman Filter requires the initial guess as a preset, which can be very rough.

3.1.1 Estimation algorithm

The following chart depicts the estimation algorithm that is used in this example.

MEASURE @ INITIALIZE

Input: Output: System Input:
. = System State
Measured Value State Estimate x,,,, =
— Initial Guess

zy Xoo
UPDATE 3 @ PREDICT + @ Unit Del
ni ela
Estimate the current Calculate the predicted state > n—l;’

Calculate.the |—»| state using the State = P for the next iteration using —_—y

Kalman Gain () Update Equation Xnn system’s Dynamic Model Kn+in i
F Y
ft\"_",l

Figure 3.5: FEstimation algorithm - Example 1.
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Now we are ready to start the measurement and estimation process.

3.1.2 The numerical example
3.1.2.1 Iteration Zero
Initialization

Our initial guess of the gold bar weight is 1000 grams. The initial guess is used only once
for the filter initiation. Thus, it won’t be required for successive iterations.

Ii‘o70 = 10009

Prediction

The weight of the gold bar is not supposed to change. Therefore, the dynamic model of
the system is static. Our next state estimate (prediction) equals the initialization:

:27}170 == (2’070 == 10009

3.1.2.2 First lteration
Step 1
Making the weight measurement with the scales:

21 = 996¢

Step 2

Calculating the gain. In our example a, = 1/n, thus:

1
OZ]ZI:].

Calculating the current estimate using the State Update Equation:

11 = @10+ a1 (21 — #1,0) = 1000 + 1 (996 — 1000) = 996¢

p ) The initial guess could be any number in this specific example. Since a; = 1, the
initial guess is eliminated in the first iteration.

Step 3
The dynamic model of the system is static; thus, the weight of the gold bar is not supposed

to change. Our next state estimate (prediction) equals to current state estimate:

To1 = 21,1 = 996¢g
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3.1.2.3 Second lteration

After a unit time delay, the predicted estimate from the previous iteration becomes

the prior estimate in the current iteration:
T2, = 9969

Step 1

Making the second measurement of the weight:
z9 = 994g

Step 2

Calculating the gain:

1
04225

Calculating the current estimate:
1
Zoo = To1 + g (22 — T21) = 996 + 5(994 —996) = 995¢

Step 3

.@372 = i’272 = 9959

3.1.2.4 Third lteration

23 = 10214
1
a3 = §

1
Fy3= 995+ 5 (1021 — 995) = 1003.67g
Z43 = 1003.67g

3.1.2.5 Fourth lteration

24 = 1000g
1
ay = Z

1
F4.4 = 1003.67 + £ (1000 — 1003.67) = 1002.75g
&5.4 = 1002.75¢
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3.1.2.6 Fifth Iteration
25 = 10029

1
as = —

5

1
Z55 = 1002.75 + 5(1002 —1002.75) = 1002.6¢
1%6,5 = 1002.69

3.1.2.7 Sixth lteration
26 = 1010g

1
046:6

1
5.6 = 1002.6 + - (1010 — 1002.6) = 1003.83
&7 = 1003.83g

3.1.2.8 Seventh Iteration
z7 = 983¢g

1
047:?

1
77 = 1003.83 + - (983 — 1003.83) = 1000.86
&s.7 = 1000.86g

3.1.2.9 Eighth Iteration
Z8 = 9719

1
a8:§

1
g5 = 100086 + ¢ (971 — 1000.86) = 997.125g
Zog = 997.125¢g
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3.1.2.10 Ninth lteration

zg = 993¢g
1
ag = §

(993 — 997.125) = 996.67¢

Nl

:i'gjg =997.125 +
12'1079 = 996.679

3.1.2.11 Tenth lteration

210 = 10239
1
@10 = TO

1
Z10,10 = 996.67 + 10 (1023 — 996.67) = 999.3¢
jll,lO = 9993g

We can stop here. The gain decreases with each measurement. Therefore, the contribution
of each successive measurement is lower than the contribution of the previous measurement.
We get pretty close to the true weight, which is 1000g. If we were making more

measurements, we would get closer to the true value.

The following table summarizes our measurements and estimates, and the chart compares
the measured values, the estimates, and the true value.

Table 3.2: Averaging equation.

~

n ap Zn Znn Tntim
1 1 996 996 996
2 1/2 994 995 995
3 1/3 1021 1003.67 1003.67
4 1/4 1000 1002.75 1002.75
5 1/5 1002 1002.6 1002.6

Continued on next page
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Table 3.2: continued from previous page

n oy, Zn Tnn Tntin
6 1/6 1010 1003.83 1003.8
7 1/7 983 1000.86 1000.86
8 1/8 971 997.125 997.125
9 1/9 993 996.67 996.67
10 1/10 1023 999.3 999.3

3.1.3 Results analysis

The following chart compares the true, measured, and estimated values.

1020 4

1010 4

Weight (g)

)
B
S

970 4

1000 4

=—o— Measurements
—@— Estimates
—)— True values

<>

<
<
<
>

2 a 6 8 10
lterations

Figure 3.6: Example 1: Measurements vs. True value vs. Estimates.

The estimation algorithm has a smoothing effect on the measurements and converges
toward the true value.

3.1.4 The required number of measurements

What should be the number of measurements? Should we stop after 10, 100, or maybe
1000 measurements?
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The required number of measurements depends on the desired estimation precision. We
will have the answer to this question once we’ve gone through the book’s second part.
However, the inquisitive reader can sneak a peek at Appendix J of the book.

3.1.5 Example summary

In this example, we’ve developed a simple estimation algorithm for a static system. We
have also derived the state update equation, one of the five Kalman Filter equations. We
will revise the state update equation in subsection 4.1.4.
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